JPL Todo-List

Table of contents

1 Reimplement fragmentalioN............ceeeeerererese e
2 Remove class JPLIONIZEAPEPLITE.........cccueiiiieece e e
3 Get peak annotation indices in JPLFragmentAnnotations............ccocevevevieiieeeceesiieesee e
4 Remove peaks from indices in JPL FragmentAnnotations.............ccccveceeveerieeieeseesiesee e
5 Handle 10SSes iN Fragmentation.............cccoveieieenieie et
6 POlYMEr/PEPide MaNGOEccve ettt
7 Handle internal Fragmentation.............cooeieiireeieieeese e
8 More methods for JPLM SRENUENENccoiiiiieeee e
9 Generic Symbol Sequence and Polymer GENerator...........ccocveveeeiieiieenie s
10 Bio-Sequence DECIarationN............ccveuiiieriecie et
11 MESS CAlCUIALO ...ttt bbbttt bbb ene e eneas
12 Multiple language (Mixing alphabet and tOKENS)..........ccoererireriirienere e,

JPL Todo-List

1. Reimplement fragmentation
Status: Open.

Actually, each fragmenter share a static array of N fragments (N extensible if more fragment
needed). When a peptide is fragmented, the fragmenter is setting the current fragment in the

array. After the fragmentation is finished, acall to getPeakList([filter]) return a new instance
of JPLM SPeakList (subarray fragmentg[0, last fragment] is sorted first).

The main problem of thisimplementation may be caused by the intrication calls of many
fragmenters. For example, F1 fragments P1, F2 fragments P2, then F1 get a peak list that is
coming from P2 ... sic!!

As fragmentation is computed and fragment generated, mzs will be sorted progressively and
annotations positions will have to be updated in the same time. | am going to implement an
in-place sort (merge sort for instance) that link an array with another one. At the end of the
fragmentation, a new instance of peaklist will be created with all fragments (that pass the
optional filter). The computation should be quicker and the internal fragments object will be
useless and deprecated.

2. Remove class JPL | onizedPeptide

Status: Open.

JPL IonizedPeptide is simply a JPL Peptide with acharge ! | am going to add "charge" into
JPL Peptide and get rid off JPL1onizedPeptide.

3. Get peak annotation indicesin JPL FragmentAnnotations

Status: Open.

4. Remove peaksfrom indices in JPL FragmentAnnotations
Status: Open.

5. Handlelossesin Fragmentation
Status: Closed - Done.

Specific | osses pattern depends on various paraneters
including the am no acid conposition and size of the
pepti de, excitation nethod, tinme scale of the instrunent,

Page 2

JPL Todo-List

the charge state of the ion , ...
Pai zs and Suhai in Fragnentation pathways of protonated
pepti des, 2004.

We will first generate loss water/ammonium fragments with really simple general rules (we
will not include the type of instrument parameter). Here are the ssmple rules based on
sequence composition or specific sequence patterns:

« amonium loss from the side chains of R, K, N and Q (lots of mechanisms there).

» water loss from the side chains of Sand T attacked by the nearest Nt backbone amide
oxygens.

« water lossinvolving dehydratation of the C-terminal (oxazolone pathway).

« water loss from (H-(X)m[DE](X)n-OH and H-E(X)n-OH (pyroglutamate pathway).

Here ismore or less the algorithm to include in the fragmenter:

1. Locate the amino-acids able to lose material and the type of losses.

2. Generate every sequences w/wo loss depending on variability of the loss (i.e. if 3 1oss
sites (fixed) -> 3 segs.), see JPLPept i deEdi t or Fact ory.

3. All sequencesto fragment normally where all peaks go in one peak list.

6. Polymer/Peptide M anager
Status: Closed - done.

If signals or motifs are detected on polymers, the manager can trigger specific operations of
edition on the sequence (cutting or adding modifications at detected amino-acid sites). see
how to deal with JPLDigester asit is a subtask of this manager. Here are what a manager
need:

1. A sequence matcher to find AA target site
2. A modif editor to add modifications on polymer sequence if sites have matched the motif

The manager will handle the combinatory editing for variable- typed modifications may be
with the help of a Polymer Factory (see JPL PeptideEditorFactory).

7. Handle internal Fragmentation
Status: Open.

8. More methods for JPL M SRenderer

Status: Closed - done.
e Add methodsto filter intensity

Page 3

JPL Todo-List

« Add methods to filter fragment type (a, b, y, prec, ...)
« Add methods to transform intensity
» Possible to choose peak color for fragment types

9. Generic Symbol Sequence and Polymer Generator
Status: Open.

This class will generate sequence from specified parameters following specific distributions.
List of parameters to care about: alphabet from which we pick monomer, monomer
frequencies, modification frequencies (monomer (in)dependant).

Distributions

« Homogeneous distribution
« Monomer-dependent distribution in a specific al phabet
» Previous state-dependence (Markov chain, bayesian conditional probs).

10. Bio-Sequence Declaration
Status: Closed - canceled.

Extends the language of bioseq to enable support of average accuracy. Every future
modification will be converted to the same accuracy.

« inbuilder through method accuracy()
 instring definition by explicitly surrounding diamonds (like for molecule "CH3" and
"<CH3>").

Examples:

bi 0Seq =
new JPLBi 0SeqBui | der <JPLAmM noAci d>(" MORSTATGCFKL" ,
JPLAASynbol . get Synbol Type()). accuracy(AVG . buil d();

bi 0Seq =
new JPLBi 0SeqBui | der <JPLAm noAci d>(" <MOQRSTATGCFKL>"
JPLAASynbol . get Synbol Type()). buil d();

11. Mass Calculator

Status: Closed - done.

Find away to get mass accuracy type mass from any symbols with
JPL MassCal culator.getAvgA ccuracyl nstance() or

Page 4

JPL Todo-List

JPLMassCal cul ator.getM onoA ccuracy I nstance().

12. Multiple language (Mixing alphabet and tokens)
Status: Open.

Macromolecules are instanciated from alanguage defined by a molecular a phabet
(symbolism). For example proteins are defined from an a phabet of amino-acids. But then
how to define in this sequence other infos aside symbols like modifications ? We propose to
handle a multi-language sequence to deal with this problem. Each symbol defining an core
element of the macromolecule and each token defining an annotation that apply to the
previous symbol. A token can express hierarchical annotation.

Let's take the example of modifications. For example, we want to define tokens for
modification then more specific token for different modif format:

Alphabets and Tokens

amino-acid (monomer symbol)

amodif apply to previous symbol (token)
mass value type modif (token)

formula molecule type modif (token)
amino-acid modif (token)

Here is an example of grammar and tokens:

e

Page 5

	1 Reimplement fragmentation
	2 Remove class JPLIonizedPeptide
	3 Get peak annotation indices in JPLFragmentAnnotations
	4 Remove peaks from indices in JPLFragmentAnnotations
	5 Handle losses in Fragmentation
	6 Polymer/Peptide Manager
	7 Handle internal Fragmentation
	8 More methods for JPLMSRenderer
	9 Generic Symbol Sequence and Polymer Generator
	10 Bio-Sequence Declaration
	11 Mass Calculator
	12 Multiple language (Mixing alphabet and tokens)

