
Conditions

Table of contents

1 Overview..2

2 Conditions.. 2

2.1 Generic Parameters of ConditionImpl.Builder..2

3 Expression Tree over Conditions...3

4 Caveat due to java reified-less generic.. 4

Copyright © 2010 The Swiss Institute of Bioinformatics. All rights reserved.

1. Overview

The package org.expasy.jpl.commons.base.cond provides powerful mechanisms to test
conditions.

It provides a condition builder and objects to create expressions over conditions.

Condition is largely propagated in all JPL filters.

2. Conditions

A condition over a specific class of objects is to be tested against a specific operand and
operator given at building time. Then, the satisfiability of the condition is tested against a
valid object.

2.1. Generic Parameters of ConditionImpl.Builder
1. <T> the first type stands for the object class to Test.
2. <V> the second type stands for the Value type really tested.

If data types are not compatible given the operator, you will have to define a stub that
handles the access from <T> to <V> and give it to the accessor method.

For example, in the following condition new ConditionImpl.Builder<List,
Integer>(5).accessor(stub).build() we have provided a stub that returns an
Integer from the List parameter.

Here is a definition of a condition over Doubles equivalent to the following equality 'x =
50.0'.

// the default operator is 'equals'
Condition<Double> condition =

new ConditionImpl.Builder<Double, Double>(50.0).build();

The condition is then evaluated on x (here '50.01') that eventually return false.

Assert.assertFalse(condition.isTrue(50.01));

Here is a less strict version equivalent to 'x ~ 50.0':

condition =
new ConditionImpl.Builder<Double, Double>(50.0).operator(
OperatorApproxEquals.newInstance(0.01)).build();

Conditions

Page 2
Copyright © 2010 The Swiss Institute of Bioinformatics. All rights reserved.

Assert.assertTrue(condition.isTrue(50.09));

Sometimes the object to test is not of the same class type that the value to test with.

In a first case, it is a classical wishing situation when it imply specific set operators like
belongs or contains:

// A simple set
final Set<Double> s1 = new HashSet<Double>();
s1.add(54.3);
s1.add(23.);

// Another set
final Set<Double> s2 = new HashSet<Double>();
s2.add(34.);
s2.add(23.);

final Condition<Set<Double>, Set<Double>> cond =
new ConditionImpl.Builder<Set<Double>, Set<Double>>(s2).operator(

OperatorContains.newInstance()).build();

Assert.assertFalse(cond.isTrue(s1));

In other cases, like noticed above, we have to provide an accessor method that makes the
link to the object to test the predicate:

import import org.apache.commons.collections15.Transformer;

List<Integer> l = Arrays.asList(1, 2, 3);

// this stub reduces a List to its size (Integer)
Transformer<List, Integer> getListSize =

new Transformer<List, Integer>() {

public Integer transform(final List l) {
return l.size();

}
};

// the condition with the path correctly set
Condition<List, Integer> hasThreeElements =

new JPLCondition.Builder<List, Integer>(3).accessor(
getListSize).build();

Assert.assertTrue(hasThreeElements.isTrue(l));

3. Expression Tree over Conditions

Expression trees represent code in a tree-like data structure, where each node is an expression
over Condition. It is then possible to create conditions over condition:

Conditions

Page 3
Copyright © 2010 The Swiss Institute of Bioinformatics. All rights reserved.

ConditionInterpreter<Double> engine =
ConditionInterpreter.newInstance();

// the engine has an internal symbol table
// creation of a condition assigned to "c1"
engine.addCondition("c1", new ConditionImpl.Builder<Double,

Double>(0.).operator(OperatorGreaterThan.newInstance()).build());

// creation of a condition assigned to "c2"
engine.addCondition("c2", new Condition.Builder<Double,

Double>(10.).operator(OperatorLowerThan.newInstance()).build());

// creation of a complex condition over "c1" and "c2"
Condition<Double> condition = engine.translate("c1 & c2");

Assert.assertTrue(condition.isTrue(4.));
Assert.assertFalse(condition.isTrue(14.));

4. Caveat due to java reified-less generic

If object and value classes are not compatible because the user did not specify the path or
did not set the correct operator, a IllegalStateException is thrown at testing time
and not at building time :-(

We could have added a mandatory parameter to the builder to redundantly set the object class
(the T in Condition<T, V>) and compare it with the value type at building time.
Unfortunately, it is not possible to write some generic class like Collection. For example:

... you can't write class literals for generic types like
List<String>.class, or test if an object is an instanceof
List<String>, or create an array of List<String> (in
Reified Generic for Java).

For all these reason, we had to test it at testing time and not at building time.

Conditions

Page 4
Copyright © 2010 The Swiss Institute of Bioinformatics. All rights reserved.

http://gafter.blogspot.com/2006/11/reified-generics-for-java.html
http://gafter.blogspot.com/2006/11/reified-generics-for-java.html

	1 Overview
	2 Conditions
	2.1 Generic Parameters of ConditionImpl.Builder

	3 Expression Tree over Conditions
	4 Caveat due to java reified-less generic

