Conditions

Table of contents

@Y VT 2
2 O30 1 o] TSR 2

2.1 Generic Parameters of ConditionImpl.BUilder...........coooeiiieiiiciicse e 2
3 EXpression Tree over CONAITIONS........ccooveiieieiie e see sttt esreenesneenneas 3

4 Caveat dueto javareified-1eSS gENENiC......ccciiieie i 4




Conditions

1. Overview

The package org.expasy.jpl.commons.base.cond provides powerful mechanisms to test
conditions.

It provides a condition builder and objects to create expressions over conditions.

Condi ti onislargely propagated in all JPL filters.

2. Conditions

A condition over a specific class of objectsisto be tested against a specific oper and and
oper at or given at building time. Then, the satisfiability of the condition is tested against a
valid object.

2.1. Generic Parameters of Conditionlmpl.Builder

1. <T>thefirst type stands for the object classto Test.
2. <V> the second type stands for the Value type really tested.

If data types are not compatible given the oper at or , you will have to define a stub that
handles the access from <T> to <V> and giveit to theaccessor method.

For example, in the following condition new Condi ti onl npl . Bui | der <Li st
| nt eger >(5).accessor (stub). buil d() wehave provided a stub that returns an
Integer from the List parameter.

Hereis adefinition of a condition over Doubl esequivalent to the following equality 'x =
50.0'.

/1 the default operator is 'equals'
Condi ti on<Doubl e> condition =
new Condi ti onl npl . Bui | der <Doubl e, Doubl e>(50.0) . bui | d();

The condition is then evaluated on x (here '50.01") that eventually return false.
Assert . assert Fal se(condition.isTrue(50.01));
Hereisaless strict version equivaent to 'x ~ 50.0":

condi tion =
new Condi ti onl npl . Bui | der <Doubl e, Doubl e>(50. 0) . oper at or (
Oper at or Appr oxEqual s. newl nst ance( 0. 01)) . bui l d();

Page 2



Conditions

Sometimes the object to test is not of the same class type that the value to test with.

In afirst case, it isaclassical wishing situation when it imply specific set operators like
bel ongs or cont ai ns:

In other cases, like noticed above, we have to provide an accessor method that makes the
link to the object to test the predicate:

3. Expression Tree over Conditions

Expression trees represent code in atree-like data structure, where each node is an expression
over Condi t i on. Itisthen possible to create conditions over condition:

Page 3



Conditions

4. Caveat duetojavareified-less generic

If object and value classes are not compatible because the user did not specify the pat h or
did not set the correct operator, al | | egal St at eExcept i on isthrown at testing time
and not at building time :-(

We could have added a mandatory parameter to the builder to redundantly set the object class
(the T in Condition<T, V>) and compare it with the value type at building time.
Unfortunately, it is not possible to write some generic class like Collection. For example:

... you can't wite class literals for generic types |like
List<String>.class, or test if an object is an instanceof
List<String> or create an array of List<String> ( iLn
Reified Generic for Java).

For all these reason, we had to test it at testing time and not at building time.

Page 4


http://gafter.blogspot.com/2006/11/reified-generics-for-java.html
http://gafter.blogspot.com/2006/11/reified-generics-for-java.html

	1 Overview
	2 Conditions
	2.1 Generic Parameters of ConditionImpl.Builder

	3 Expression Tree over Conditions
	4 Caveat due to java reified-less generic

